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The factorisation method and supersymmetryt 

N A Alves and E Drigo Filho 
Instituto de Fisica Tebrica, Universidade Estadual Paulista, Rua Pamplona, 145-01405-Si0 
Paulo, SP, Brazil 
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Abstract. Applying the factorisation method, we generalise the harmonic oscillator and 
the Coulomb potentials, both in arbitrary dimensions. We also show that this method 
allows the determination of the superpotentials and the supersymmetric partners associated 
with each of those systems. 

1. Introduction 

The factorisation method, although well known, has recently received renewed atten- 
tion. In particular we mention the papers by Mielnik (1984), Fernandez (1984) and 
Kimel (1982). 

The fact that exactly soluble problems of quantum mechanics can be solved in 
terms of creation and annihilation operators has been explored. Mielnik (1984) has 
applied the factorisation method in the one-dimensional harmonic oscillator problem 
and Fernandez (1984) treated the three-dimensional Coulomb potential. In their 
approach, new potentials were produced. In other words, if we start with the harmonic 
oscillator, the procedure allows us to construct a new class of potentials which still 
have the oscillator spectrum. This is achieved by means of the generalised version of 
the operators that define the algebraic method of factorisation. 

On the other hand, the realm of supersymmetric quantum mechanics has also been 
explored in dealing with the harmonic oscillator and Coulomb potentials. The reader 
is referred to the papers by Cooper and Freedman (1983, 1985), Akhoury and Comtet 
(1984), Kostelecky and Nieto (1984), Lancaster (1984), Ravndal(l984) and Haymaker 
and Rau (1986). The supersymmetric partners for those systems were obtained in 
arbitrary dimensions by Kostelecky et a1 (1985). Furthermore the connection between 
harmonic oscillators and the hydrogen atom (Bergmann and Frishman 1965, Rockmore 
1975, Kibler and Negadi 1983, Cornish 1984, Kibler et a1 1986) in arbitrary dimensions 
was also extended to its supersymmetric partners (Kostelecky et a1 1985). This series 
of maps between the various systems involved is achieved by means of the radial 
solutions. 

In this paper, we consider the harmonic oscillator, the hydrogen atom and their 
supersymmetric partners, in arbitrary dimensions, and construct the solutions by means 
of the factorisation method. Furthermore, we show that the generalised version of 
the creation and annihilation operators provided by the factorisation method leads to 
the possible superpotentials that define the supersymmetric charges. 

t Work supported by Fundaqlo de Amparo a Pesquisa do Estado de SBo Paulo, Brazil. 
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In P 2, we describe the harmonic oscillator in D dimensions by using the factorisation 
method. Also, through a generalised version of this method, we determine the class 
of potentials that exhibits the same energy spectrum as the oscillator. 

In 0 3, we apply the procedure to the Coulomb potential in d dimensions. We also 
work out the solutions of its corresponding generalised version. 

In 0 4, we include a descriptive discussion of the supersymmetric quantum 
mechanics and identify our previous Hamiltonians as components of the supersym- 
metric one. We also show that superpotentials can be obtained from the corresponding 
generalised version of the operators that naturally appear in the development of the 
generalised factorisation method. 

2. The harmonic oscillator in arbitrary dimensions and generalised factorisation 

In this section, we apply the factorisation method for the harmonic oscillator in D 
dimensions. The radial eigenvalue equation for the D- dimensional simple harmonic 
oscillator of mass m and angular frequency w is given by 

where (Kostelecky er a1 1985) 

H -- A* -- d2 [L+f (D- l ) ] [L+ i (D- l ) - l ]  m2wZ 
L - 2 m (  dR2+  R2  

The explicit expression for UN,L( R )  is not relevant for the purposes of this paper. 
Its normalisation is taken as 

The energy eigenvalues EN are given by 

E N  =fAw(2N+ D) (2.4) 
with N = 2 n + L ,  n = 0 , 1 ,  . . . ,  and D 2 2 .  

As is well known, the factorisation method consists of introducing creation- and 
annihilation-type operators to obtain the radial Hamiltonian in a factorised form. For 
the D-dimensional harmonic oscillator, we have 

HL=a:aL+ihw(2L+ D) (2.5) 
where the operators aL and a: are given by 

a -- h ( d  -+-R- mw L + i ( D - l ) )  
L - f i  dR h R 

and 

h ( -- d +-R- mw L+f(D-1))  
f i  dR A R 

By using these operators, we can also realise that 

H L + l =  ara;+ihw(21+ 0 - 2 ) .  

( 2 . 6 ~ )  

(2.6b) 

(2.7) 



Factorisation method and supersymmetry 3217 

The operators aL  and a: are interpreted as creation and annihilation ones. In order 
to clarify this point, we rewrite the eigenvalue equation (2.1) as 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

HL 

HL+ 1 u 2 n  + L+ 1, L+ 1 ( R 1 = E2n + L+ 1 .L+ 1 u 2 n  + L+ I ,  L+ 1 ( R 1. 

aLa aL  u2 + L, ( R ) = [ EZn + L. L - 5 hw (2 L + D )  1 a L  u2 + L, L ( R 1 

aLa: U ~ ~ ' + L + I , L + ~ ( R )  = [Ez~'+L+I,L+I -thw(2L+ 0 - 2 1 1  U Z ~ , + L + ~ , L + ~ ( R ) .  

L.L( R = E2n+ L,L u 2 n  + L, L( R ) 

and 

Now it is straightforward to show that we have the relations 

and 

By comparing these two last relations, we get a construction method for obtaining 
the eigenvectors and eigenvalues of HL. From (2.10) and (2.11), we have that 

aLU2n+L,L = U Z ~ ~ + L + ~ , L + ~  (2.12) 

is an eigenfunction of the operator aLa:, and that 

E ~ ~ + L , L  = E z ~ ' + L + ~ , L + ~  + fiw 

from which we get n ' =  n - 1 .  Thus we conclude that 

(2.13) 

Q L  U2n + L, L = u 2 n  + L- 1, L+ 1 . (2.14) 

This relation shows us that aL operating on U2n+L,L increases L by one unit while n 
decreases by one. Equation (2.14) is an example of a ladder relation. Similarly, we 
can also obtain a ladder relation involving the decreasing operator a: ,  namely 

a ; u 2 n + L - l , L + l  = U Z n + L , L .  (2.15) 

In the following, we will explore some possibilities of generalisation of the operators 
aL and a'; proposed by Mielnik (1984). In particular, we will construct a whole class 
of potentials in D dimensions which have the D-dimensional harmonic oscillator 
spectrum. 

Let us define the new operators 

and 

A+ --( h --+fL(R)) d 
'-& dR 

( 2 . 1 6 ~ )  

(2.16b) 

with f L ( R )  to be determined, and demand that the relation (2.7) also holds for these 
operators, namely 

H L + I  = ALA; + f hw (2L + D - 2) ( 2 . 1 7 ~ )  

(2.17b) 

From this condition, we obtain the following Ricatti differential equation for f L (  R):  

[ L + f ( D - 1 ) ] [ L + i ( D - 1 ) + 1 ]  m2w2 mw +- R2-- ( 2 L + D - 2 ) .  
R' h2  h 

ft+f:= (2.18) 
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In the present case, from ( 2 . 6 ) ,  we know a particular solution for this equation, given 
by 

mw L + f ( D - 1 )  
R f L ( ~ ) = -  R -  

h 
(2 .19)  

So the general solution can be written as 

f L ( R )  = f L ( R ) +  4 L ( R ) .  (2 .20)  

Standard analytic manipulations of the resulting differential equation for 4 L (  R )  
will produce the solution 

$JL( R )  = exp( -? R 2 )  [ y +  loR d R  R2L+D-‘  exp( -? R 2 ) ]  -’, (2 .21)  

In order to avoid problems with possible singularities in (2 .21) ,  we impose the 
following conditions on y. 

(i) If ( 2 L +  D -  1 )  is even then 

2mw mw 
Y’O or 

(ii) If ( 2 L +  D - 1 )  is odd then 

( 2 . 2 2 a )  

Y>O or ( 2 . 2 2 b )  

Let us now turn to the generalised version of HL. Let us first note that the 
commutator of A L  and A I  is not a number, but is given by 

(2 .23)  

As we will see, based on this fact we will be able to define another Hamiltonian 
different from HL. In this new description, we would like to establish a relation in 
terms of AL and A ; ,  similar to ( 2 . 5 ) .  With this objective in mind and using (2 .17)  
and ( 2 . 2 3 ) ,  we write the Hamiltonian HL+I in terms of AL and A: in the following way: 

+ i h w ( 2 L + D - 2 ) .  
mw L + f ( D - 1 )  

R 2  

On the other hand, from (2 .2)  we can see that 

h2  L + f ( D - 1 )  
R 2  ’ 

HL = HL+I -- 
m 

Now, by comparing ( 2 . 2 5 )  with (2 .24) ,  we obtain 

(2 .24)  

(2 .25)  

h2  
HL -- $;( R )  = A;AL + f h w ( 2 L +  D ) .  (2 .26)  

Hence, the inverted product of the operators AL and A i  produces a new Hamiltonian 
that differs from the previous H L  by the function +’r (R) .  Thus we are prompted to 
define the Hamiltonian ZL as 

z L =  H , - ( h 2 / m ) 4 ’ r ( R )  (2 .27)  

m 
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which turns out to be the corresponding generalised version of HL, namely 

XL= A:AL+ihw(2L+D). (2.28) 

However, due to the non-commutativity of AL and A: we obtained a new class of 
potentials u ( R )  given by 

U( R )  = $mw2R2 - ( h2/  m ) +  ;( R ) .  (2.29) 

The eigenvectors and eigenvalues associated with the new Hamiltonian XL can be 
obtained by noticing that 

XLA; = A;( H,+,+ h w ) .  (2.30) 

So, if { UN,,+,} are the eigenvectors of HL+,, with eigenvalues EN then {A: UN,,+,} 
are the eigenvectors of X, with eigenvalues ( E N  + h w ) .  

The eigenvectors of X, are orthogonal for 

(2.31) 

However, the basis described by {A:UN,,+,} does not span the whole space L 2 ( R ) .  
AT is the operator that allows us to get the eigenfunctions of XL from the corresponding 
eigenfunctions of HL+, , but in this process we miss the real ground state for fixed L. 
We can solve this problem through the following considerations. The ‘missing vector’ 
f i L , L ( R ) ,  that completes the basis, is orthogonal to the set {A: UN,,+,}, i.e. 

( f i L , L 9  A:uN,L+ , )=o  for all N. 

From (2.32), it is also true that 

(2.32) 

- 
( A L ~ L , L ,  UN,,+,) = O  (2.33) 

and, since {UN,,+,} is a basis, we obtain the following condition to determine CL,,: 

~ , f i , , ,  = Q .  (2.34) 

This is a first-order differential equation with solution given by 

fiL,L( R )  = CRL exp ( -- ;; R 2  - I o R d R m , ( R ) )  (2.35) 

which corresponds to the ground state associated with each fixed L. The corresponding 
eigenvalue is given by (2L+ D)hw/2, since 

(2.36) 

In this way, we succeeded in generalising the D-dimensional harmonic oscillator 
Hamiltonian, defined in terms of the a ,  and a: operators, to a new class of Hamiltonians 
X L ,  defined in terms of the generalised AL and A; operators. The spectrum of both 
Hamiltonians is the same when we include the ‘missing vectors’. 
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3. The Coulomb potential in arbitrary dimensions and generalised factorisation 

In a way very similar to that of the previous section where we discussed the D- 
dimensional harmonic oscillator, we can also define creation and annihilation operators 
to obtain the d-dimensional Coulomb Hamiltonian in a factorised form. 

The present eigenvalue problem is 

f m , d r )  = E"R,,I( r)  (3.1) 

where (Nieto 1979, Kostelecky et a1 1985) 

h 2  d2 [ l + f ( d - l ) ] [ l + f ( d - l ) - l ]  2me2 1 
' - 2 m (  dr2 r2 h2  r 

H - -  --+ (3.2) 

whose eigenvalues are given by 

me4 
E, = -7 2 h  [ n + i (d  - 3)]-2 (3.3) 

with n = n , + I + l ,  n ,=0 ,1 ,  . . . ,  and d s 3 .  
The factorised form of this Hamiltonian can be written as 

with 

l + f ( d  - 1) 
r 

and 

r 
b,=-( h T2 - + T [ / + i ( d - l ) ] - ' -  d% dr  

( 3 . 5 ~ )  

(3.5b) 

In order to determine the eigenfunctions of the d-dimensional Coulomb Hamil- 
tonian, we consider the following two possible forms of factorisation: 

me4 
2 h  

HI = b:b, -7 [ 1 + f( d - 1)]-2 (3.6) 

and 

me4 
2 h  

= bib: -7 [Z+f(d - l)]-*. (3.7) 

The corresponding eigenvalue equations are 

~ 1 ~ * , + l + l , l ( r )  = ~ n , + l + l . l ~ n , + l + l . l ( r )  (3.8) 
and 

H,+l Rn,+l+2,1+1( r )  = En,rl+2.1+1 Rn,i-l+2,1+-1(~). (3.9) 
From these equations, we obtain the following relations: 

me4 
(3.10) 
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and 

b~b;R,:-~+~,,,,(r) = ( E n : + / + 2 , 1 + 1  +--?.[I+t(d 2h -I)]-* Rn:+I+2 .1+ l ( r ) .  (3.11) ) me4 

By comparing these two last equations we are led to the following results: 

b/Rn,+/+l , / (  r )  = Rn:+1+2,,+1( r )  (3.12) 

and 

En,+/+l./ = En:+/+2,/+1. (3.13) 

From the equality (3.13) between energies, we obtain n: = n, - 1 which allows us 
to recognise bl as a ladder operator, i.e. 

blRn,+/+l,/(r) = Rn,+/+l,l+l( r ) .  (3.14) 

As we have done in the previous section, we can obtain ladder relations that involve 

bfRn,+/+l.l+l(r) = Rn,+/+l,l(r)* (3.15) 

Now we will generalise the operators bl and b; in such a way that they will still 

Let us define the generalised operators 

the operator b; ,  namely 

produce the same spectrum of the usual d-dimensional Coulomb Hamiltonian. 

BI = -("+ h Fl( r ) )  d% d r  

B-"( --+F/(r)) d 
'-G d r  

and demand that their product reproduces the spectrum of H,,, , i.e. 

In this case, the differential equation that defines our Fl(r)  is given by 

[ I + f ( d  - 1)][ I+f(d - 1) + 13 2me2 1 
r2 h 2  r 

m2e4 
F;+F:= -- - + ~ [ I + f ( d - l ) ] - '  

since 

H I + ,  =E[ --+ d2 F:(r) + F;( r ) ]  --[I me4 + $ ( d  - 
2m dr2 2h2  

(3.16a) 

(3.16b) 

(3.17) 

(3.18) 

(3.19) 

In order to find the general solution of (3.18), we write Fl(r)  as its known particular 
solution plus an unknown function q t ( r )  as 

me2 I + f ( d  - 1) 
F l ( r ) = 7 [ I + f ( d - 1 ) ] - ' -  + cpl(r ) .  h r (3.20) 

We get 

exp{ -(2me2/ h 2 ) [  I + $ (  d - 1 ) ] - ' r }  r2 /+d-1  

(3.21) 
ql(r)=r+jLdrr21+d-l  exp{ -(2me2/ h2)[ I +;( d - l)]-'r}' 
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In this case, to avoid singularities, we require that 

n o  or I’< -(21+ d - 1 ) ! { ( 2 m e 2 / h 2 ) [ l + i ( d  - 1)]-1}-2f-d.  (3.22) 

As before, we notice that the commutator 

m 
(3.23) 

and hence the inverted order of the product BIB: will also define another Hamiltonian. 
First consider that we can write 

Now from (3.2) we have 

h2  Z + i ( d - l )  
= HI 

r2  HI+, -- m 
(3.25) 

which is useful for rewriting (3.24) in terms of H f  and comparing it with the generalised 
form obtained from (3.4). The result is written as 

h2 me4 
m 2h 

H l - - p j ( r ) = B : B f - ~ [ I + i ( d - 1 ) ] - 2 .  (3.26) 

We see that the order of the operators B: and BI on the RHS do not define the 
same HI, and in consequence, we are led to define another Hamiltonian XI as 

h2 
XI = Hf -; cpj(r). (3.27) 

This new operator exists due to the non-commutativity of Bt and B f ,  and corresponds 
to a modified potential V I  given by 

e’ h2  
r m  

u f ( r )  = ---- cp ( r ) .  (3.28) 

From the eigenvalue equation for Xf it is not difficult to see that {BTR,,,f+l} are the 
eigenfunctions if {R,,,f+l} are the corresponding eigenfunctions of H,+, , and that X f  
and Hftl have the same eigenvalue E,,. Here, as in the harmonic oscillator case, we 
also have ‘missing states’ They are similarly determined from the orthogonality 
condition, for all n, 

( k + l * / ,  B:&f+l) = 0 (3.29) 

or 

( & + l , f ,  Rfl,f+l) =o. (3.30) 

We thus obtain the equation that defines the ‘missing vector’, namely - 
BfK+,,l = 0 (3.31) 

which admits the solution 

(3.32) 
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This missing state has the eigenvalue 

me4 
2 h 2  

-- [ I+ i (d  - 1)]-2 (3.33) 

and completes the basis for 5Yl. 

Hamiltonian XI has the same spectrum as H I .  
Therefore, we have obtained a new d-dimensional potential (3.28) whose soluble 

4. Supersymmetric interpretation of the ladder operators 

We have written the harmonic oscillator and Coulomb Hamiltonians in terms of 
creation and annihilation operators. In this section, we will interpret these operators 
as supersymmetric charges. With this identification, we intend to show that all new 
Hamiltonians obtained by the combination of those ladder operators, including their 
generalised versions, correspond to obtaining their supersymmetric partners. 

Supersymmetric quantum mechanics refers to systems for which there exist charges 
Q and Q* obeying the following anticommutation relations: 

IQ, Q*} = Hss {Q,  01 = 0 io*, Q*) = 0. (4.1) 

These charges are usually written in the form 

Q*=(p+ iw’ (x ) )u -  (4.2) 

and 

Q=(p- iw‘(x) )a’  (4.3) 

H S s = p 2 + [ ~ ’ ( ~ ) I 2 +  w ” ( x ) u 3  (4.4) 

where [x, p]  = i and {U-, U+} = 1. The supersymmetric Hamiltonian Hss is written as 

where u3 is the Pauli matrix. 

representation for U- and U+: 
The function w ( x )  is known as the superpotential. We use the following matrix 

0 0  0 1  
g - = ( 1  0) U + = ( o  0) 

Equation (4.4) can be written as 

with 

DT = *d/dx+ w‘(x). 

(4.5) 

(4.7) 
The eigenstates of the supersymmetric Hamiltonian H,, are written as a vector, 

* = ($) (4.8) 

and, from (4.6) and Hss$ = E$, we can obtain (Cooper er a1 1983, 1985) 

D+,/,Y’ = -$:-I (4.9) 
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(4.10) 

which show how supersymmetry implies that the solutions with the same energy are 
paired. 

In the harmonic oscillator case, let us take 

H L  - fho(2L+ D) = H; (4.11) 

which now defines the Hamiltonian Hi with eigenvalue zero, for all L. In the present 
context, the realisation for H; is 

H-= L -  ~ L Q L .  + (4.12) 

This Hamiltonian has the eigenvalue 2hon, n 2 0. Its supersymmetric partner HI is 
given by 

(4.13) 

with eigenvalue 2ho(n + 1 ) .  Therefore, they have the same spectrum except for the 
ground state. We identify the operators aL and a: with D -  and D', respectively, 
which realise the supersymmetric algebra. And so, as done by Kostelecky et a1 (1985), 
the superpotential w can be directly obtained from the D' operators. The ground 
state can be taken from D-~+!dj-'=o as 

&-'-exp(-w). (4.14) 

On the other hand, the generalised Hamiltonian HL+l defined by the operators AL 

HL+,-fhw(2L+ D-2)=ALAz (4.15) 

will correspond to our generalised Hi, according to (2.16) and (2.17b). The latter, 
when compared with (4.4), with fL Cc w', already exhibits the superpotential, as noticed 
by Nieto (1984). Equation (2.181, introduced by the generalised factorisation method, 
shows the general form that the superpotential must have in order to produce the 
harmonic oscillator spectrum, except for the zero ground state in this case. The other 
Hamiltonian 

H: E aLaI= H L + l  -ihw(2L+ D - 2) 

and A:, in (2.17a), 

H- L - = %'L - iho(2L+ D )  = AlAL 

defines its generalised supersymmetric partner, since 

and 

The corresponding supersymmetric Hamiltonian for the harmonic oscillator is 

Hs, = ( HL+ 1 
(2L + D - 2)  
0 

(4.16) 

(4.17) 

(4.18) 

(4.19) 
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Our conclusions for the harmonic oscillator can be directly extended to the Coulomb 
potential. In this case, we have 

and 

(4.20) 

(4.21) 

Again, we recognise b t  and b, as D+ and D-  respectively. By considering their 
generalised version, we are led to the supersymmetric Hamiltonian 

(4.22) 

We can obtain the superpotential from the generalised operators BI and B: through 
( 3 . 1 6 ) - (  3 . 1 8 ) .  

In this way, we succeed in establishing the complete relation between the generalised 
annihilation and creation operators with all possible supersymmetric charges. These 
are expressed in terms of the superpotentials which can be obtained from (2.20), for 
a spectrum of the harmonic oscillator type, and from (3.20) for one of the Coulomb 
potential type. 
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